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1. Carbon Capture and Storage: What and Why

Carbon dioxide capture and geologic storage comprises:

Capture of C02 from an " STORAGE OVERVIEW |
exhaust source

1 _ Saline formations

The injection of CO, into

2 _ Injection into

permeable subsurface (> P ormnmele
coal seams or
800m) geologic traps for s
. LY ) f CO, i
ﬂ Ul d S i e:ﬁac:lced 2""

recovery

4 _ Depleted oil and
gas reservoirs

Global CCS Institute
IPCC (2005) Special Report on Carbon

Capture and Sequestration




UN IPCC Synthesises Results of Integrated Assessment Models asking “How can
we achieve climate change mitigation”?

Models meet emissions targets while maximising social welfare

Results compiles from > 1200 model runs
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Avoiding dangerous climate change
requires large scale deployment of CCS

Availability of CCS by 2030 is a leading
control of mitigation costs

Most models cannot achieve 430-480
CO, stabilisation in the atmosphere by
2100 without CCS where nearly all can
in the absence of other technological
options.

Intergovernmental Panel on Climate Change Climate Change 2014
Report — Working Group Ill: Mitigation of climate change
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IPCC Scenarios use a lot of CO, - - - - - - - - -
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Why not do something else with
the CO,?

Scale. The amount produced from
fossil fuel consumption far
exceeds any useful demand

Water 3,700 Gt

8_
= B
O]
e CO2 [GtC]
(7]
()
= 4t
2 -
Cement, steel 1.5 Gt
Wheat, corn, rice .6 Gt

1%00 1920 1940 1960 1980 2000
Year

Data from: http://cdiac.ornl.qgov/ftp/ndp030/global.1751 2008.ems




There is an estimated vast capacity
for CO, storage globally

> 11,000 Gt CO,

First generation of projects
underpinned by up to 350 Gt
capacity in oil and gas reservoirs
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2. Technical Limitations to Deployment
Few for the first generation of deployment

Over 50-100 year timescales pressure and
plume migration create uncertainty
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What happens to the injected CO,?

Reservoir pressure may increase
CO, migrates buoyantly

It is trapped

* Beneath impermeable caprocks

* Inrock pores through capillary
trapping

* By dissolution into reservoir
brine

Krevor, Blunt, Benson, Pentland, Reynolds, Al-
Menhali, Niu (2015) Capillary trapping for geologic
carbon dioxide storage. I/JGHGT, 40, 221-237
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Unexpected plume migration often observed at
large scale injection sites
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Describing CO, flow is a multi scale issue

Rock core
Pore Bunter and Captain
networks Sandstones
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Steady state, co-injection of N, and brine into a Bentheimer sandstone
rock core, 5mm diameter, 12mm length




Conceptual picture for Darcy’s law: Connected paths

~5 000 um 2 ~100 um
—> >

Ca; = 1iqi/y

Avraam, Payatakes (1995) Flow regimes and relative permeabilities
during steady-state two-phase flow in porous media, J. Fluid Mech.,
293, 207-236



There is constant breakage and reformulation of connected
paths along pore networks at low capillary number

Reynolds, C. A., Menke, H., Andrew, . . . .
M., Blunt, M. J., & Krevor, . Nitrogen visualised flowing through the pores

(2017). Proceedings of the during co-injection with water. Each frame ~45s

National Academy of Sciences,

114(31), 8187-8192. Field of view ~ 1 mm?3. Flow from left to right
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At cm-scales heterogeneities can lead  *
to large variations in saturation, and
impacts on relative permeability
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We can construct numerical models with multiphase flow
heterogeneity from the data — the first step in upscaling
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We characterised cm-scale heterogeneity
on a 60m interval of the Captain

Sandstone 7a ,
ji W

Planned injection site for Goldeneye

Platform

(discontinued) Peterhead CCS
project, aim to store = 20Mt CO,

Power Station

Jackson, S" & KFEVOF, S. (2019) Sub Figure from: Shell U.K., Peterhead CCS project. Document #
Judice PCCS-05-PT-ZR-3323-00002



We characterised cm-scale heterogeneity on a 60m interval
of the Captain Sandstone

Storage unit - Captain D, lower
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Exhaustive sample characterisation

> 40 rock cores characterised to develop a “ground truth” for modelling the Captain
Sandstone
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We generate synthetic realisations of the
reservoir at cm-scale resolution
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Centimetre-scale layered heterogeneity
significantly increases plume migration rate

The effect is only present if heterogeneity in the multiphase flow

properties — capillary pressure characteristics, are taken into accgunt, 1974
C — .

F. [kPa] Heterogeneous P, Ie/Ty = 50

50m



Centimetre-scale layered heterogeneity
controls field scale plume migration
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3. Incentives to Deployment
Currently a limited number of
industrial projects around the
world ~35 Mtpa capacity
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@ Operating
O Under construction

© Advanced development

@ Early development

Source: Energy Futures Initiative, 2018. Compiled using data from Global CCS Institute

Orr Jr, F. M. (2018). Carbon Capture, Utilization, and
Storage: An Update. SPE Journal, 23(06), 2-444.

Nowhere in the UK, but lots of activity
See:
https://www.gov.uk/guidance/uk-carbon-capture-
and-storage-government-funding-and-support
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Energy Technologies Institute (2016) Progressing
Development of the UK’s Strategic Carbon
Dioxide Storage Resource



Enhanced Oil Recovery
currently drives
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EOR incentivizes 11 of 14 industrial scale projects

Don Valley

Revenue from EOR

. White Rose
Power generation - - -~~~ Boundary Dam N BLGUC AN SRR | S \Peterhead) | EEEEEREEEEEEEEEE
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e
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Model of Iterative Investment in CCS with CO,-EOR

MIICE

Developed a geographically neutral detailed iterative economic model in MATLAB with

assumption based inputs

INPUTS
e CO, supply
* Oil fields suitable for CO,-
EOR e

e CO, -EOR production profiles
* Capital & Operating Cost of
CCS + CO,-EOR

*NPV Analysis for each
plausible
30-year CCS with
CO,-EOR project

OUTPUTS
* Installed capacity of CCS
e Cost of CO, Captured
 CO, Stored
e Qil Produced

e FOAK* to NOAK* cost

e  Economic climate

*NPV = Net Present Value of the sum of

discounted cash flows
- Takes into account time value of money
& risk of investment

Kolster, C., Masnadi, M. S., Krevor, S., Mac Dowell, N., &

Brandt, A. R. (2017). CO, enhanced oil recovery: a catalyst for

gigatonne-scale carbon capture and storage deployment?.
Energy & Environmental Science, 10(12), 2594-2608.

reduction

*FOAK = First of a Kind
*NOAK = Nth of a Kind

Soure code available at:
https://zenodo.org/record/10982434#.Xa3dJZNKj6A




Model of Iterative Investment in CCS with CO,-EOR
MIICE

Pool of 1000 potential oil field EOR
Year .
projects based on current data

representing global potential
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Five Scenarios exploring oil price, CO, tax, rates of price growth
and learning
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Base Case
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Depleting
Resources

Price of Qil in
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2016
S/tC0O2
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Tax rate
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Not accounting for oil consumption, more CO, is stored when
revenues from CO, storage are high
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Including emissions from end-use crude oil produced, only
very high CO, revenue leads to net CO, removed from the
atmosphere 60
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Revenues from CO, Storage struggle to overcome revenue from oil
production

—Balse Case —élimate Action I High Oil I—Forward Lelarning —DeE)Ieting World
o Revenue from Oil production + Revenue from CO,, storage
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Why is it not ha ppe nin g mor e? CCS capacity investment by 2050 (MtCOzlyear)
0 500 1000 1500 2000

Costs and weak incentives
220

For storage deployment > 1Gt CO,/year by

2050, need either

> S85/barrel of oil

> $65/ton CO, tax
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Kolster, C., Masnadi, M. S., Krevor, S., Mac Dowell, N., &
Brandt, A. R. (2017). CO, enhanced oil recovery: a catalyst for
gigatonne-scale carbon capture and storage deployment?.

Energy & Environmental Science, 10(12), 2594-2608.
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4. Storage Resource

Storage reservoirs are found in sedimentary basins

(like oil & gas reservoirs)
Sediment thickness [km]

15

-180 V —go ' | b ' | go ' ' 180

Laske, G., & Masters, G. (1997). A Global Digital Map of
Sediment Thickness. EOS Trans. AGU, 78, F483



Geologically based
estimates of storage
resource are
uncertain

Accurate resource
assessment depends
on a history of
resource use
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Pathways in the
IPCC consistent
with limiting
warming to less
than 2°C require
very large scales
of CO, injection
globally
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Current exponential growth of
storage rates: 8.6%, sufficient
to meet some <2°C pathways

Cumulative storage [Gt]

Growth Rates

1218 Gt —.

561 Gt
348 Gt
100k 8.6% growth
107

1995 2005 2015 2025

2050
Year

2100

215



Logistic growth models: an
initial exponential phase
followed by a slowing of
growth, e.g., due to emerging
resource limitation constraints

There are realistic growth
pathways to meet the lowest
storage demand scenario, P2,
in the IPCC 1.5°C report
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Higher and sustained growth
rates are needed to hit median
storage demand targets
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Sigmoidal resource limited
growth exhibits exponential
growth for a maximum of ~20%
of the storage resource
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Thus, IPCC targets point to
minimum” requirements for
both growth rates and global
storage resource

*minimum, or conservative,
because resource depletion
is often asymmetric
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Meeting the highest 2100 storage
target, 1218 Gt, implies a
maximum requirement of 2700 Gt
global storage capacity

Creating certainty around storage
resources up to 2700 Gt would
indicate we have sufficient storage
to meet long term demand

Zahasky, C., Krevor, S. (2019). Sub Judice
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Some takeaways

CO, storage is central to meeting climate change targets

Important ongoing technical issues include plume migration prediction
and subsurface pressurisation

Enhanced oil recovery is a strong incentive for CO, storage in the USA and
implications for meeting climate change targets must be assessed

Growth is currently on track for low end demand scenarios, ~400 Gt stored
by 2100

High confidence in capacity for low end demand scenarios, larger targets
are less certain but not impossible
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